13 research outputs found

    DYNAMIC ROUTING WITH CROSS-LAYER ADAPTATIONS FOR MULTI-HOP WIRELESS NETWORKS

    Get PDF
    In recent years there has been a proliferation of research on a number of wireless multi-hop networks that include mobile ad-hoc networks, wireless mesh networks, and wireless sensor networks (WSNs). Routing protocols in such networks are of- ten required to meet design objectives that include a combination of factors such as throughput, delay, energy consumption, network lifetime etc. In addition, many mod- ern wireless networks are equipped with multi-channel radios, where channel selection plays an important role in achieving the same design objectives. Consequently, ad- dressing the routing problem together with cross-layer adaptations such as channel selection is an important issue in such networks. In this work, we study the joint routing and channel selection problem that spans two domains of wireless networks. The first is a cost-effective and scalable wireless-optical access networks which is a combination of high-capacity optical access and unethered wireless access. The joint routing and channel selection problem in this case is addressed under an anycasting paradigm. In addition, we address two other problems in the context of wireless- optical access networks. The first is on optimal gateway placement and network planning for serving a given set of users. And the second is the development of an analytical model to evaluate the performance of the IEEE 802.11 DCF in radio-over- fiber wireless LANs. The second domain involves resource constrained WSNs where we focus on route and channel selection for network lifetime maximization. Here, the problem is further exacerbated by distributed power control, that introduces addi- tional design considerations. Both problems involve cross-layer adaptations that must be solved together with routing. Finally, we present an analytical model for lifetime calculation in multi-channel, asynchronous WSNs under optimal power control

    Distributed Routing and Channel Selection for Multi-Channel Wireless Sensor Networks

    No full text
    We propose a joint channel selection and quality aware routing scheme for multi-channel wireless sensor networks that apply asynchronous duty cycling to conserve energy, which is common in many environmental monitoring applications. Energy resources may vary from node to node due to differential consumption as well as availability, as observed in rechargeable sensor networks. A data collection traffic pattern is assumed, where all sensor nodes periodically forward sensor data to a centralized base station (sink). Under these assumptions, the effect of overhearing dominates the energy consumption of the nodes. The proposed scheme achieves lifetime improvement by reducing the energy consumed in overhearing and also by dynamically balancing the lifetimes of nodes. Performance evaluations are presented from experimental tests as well as from extensive simulation studies, which show that the proposed scheme reduces overhearing by ∼60% with just 2 channels without significantly affecting the network performance

    Dynamic routing with cross-layer adaptations for multi-hop wireless networks

    No full text
    In recent years there has been a proliferation of research on a number of wireless multi-hop networks that include mobile ad-hoc networks, wireless mesh networks, and wireless sensor networks (WSNs). Routing protocols in such networks are often required to meet design objectives that include a combination of factors such as throughput, delay, energy consumption, network lifetime etc. In addition, many modern wireless networks are equipped with multi-channel radios, where channel selection plays an important role in achieving the same design objectives. Consequently, addressing the routing problem together with cross-layer adaptations such as channel selection is an important issue in such networks. In this work, we study the joint routing and channel selection problem that spans two domains of wireless networks. The first is a cost-effective and scalable wireless-optical access networks which is a combination of high-capacity optical access and unethered wireless access. The joint routing and channel selection problem in this case is addressed under an anycasting paradigm. In addition, we address two other problems in the context of wireless-optical access networks. The first is on optimal gateway placement and network planning for serving a given set of users. And the second is the development of an analytical model to evaluate the performance of the IEEE 802.11 DCF in radio-over- fiber wireless LANs. The second domain involves resource constrained WSNs where we focus on route and channel selection for network lifetime maximization. Here, the problem is further exacerbated by distributed power control, that introduces additional design considerations. Both problems involve cross-layer adaptations that must be solved together with routing. Finally, we present an analytical model for lifetime calculation in multi-channel, asynchronous WSNs under optimal power control

    Distributed Routing and Channel Selection for Multi-Channel Wireless Sensor Networks

    No full text
    We propose a joint channel selection and quality aware routing scheme for multi-channel wireless sensor networks that apply asynchronous duty cycling to conserve energy, which is common in many environmental monitoring applications. Energy resources may vary from node to node due to differential consumption as well as availability, as observed in rechargeable sensor networks. A data collection traffic pattern is assumed, where all sensor nodes periodically forward sensor data to a centralized base station (sink). Under these assumptions, the effect of overhearing dominates the energy consumption of the nodes. The proposed scheme achieves lifetime improvement by reducing the energy consumed in overhearing and also by dynamically balancing the lifetimes of nodes. Performance evaluations are presented from experimental tests as well as from extensive simulation studies, which show that the proposed scheme reduces overhearing by ∼60% with just 2 channels without significantly affecting the network performance

    A Joint Routing and Channel Assignment Scheme for Hybrid Wireless-Optical Broadband-Access Networks

    No full text
    In this paper, we investigate mechanisms for improving the quality of communications in wireless-optical broadband access networks (WOBAN), which present a promising solution to meet the growing needs for capacity of access networks. This is achieved by using multiple gateways and multi-channel operation along with a routing protocol that effectively reduces the effect of radio interference. We present a joint route and channel assignment scheme with the objective of maximizing the end-to-end probability of success and minimizing the end-to-end delay for all active upstream traffic in the WOBAN. Performance evaluations of the proposed scheme are presented using ns-2 simulations, which show that the proposed scheme improves the network throughput up to three times and reduces the traffic delay by six times in presence of 12 channels and four network interface cards (NICs), compared to a single channel scenario

    NFMI: Connectivity for Short-Range IoT Applications

    No full text

    A Food Transportation Framework for an Efficient and Worker-Friendly Fresh Food Physical Internet

    No full text
    In this paper, we introduce a physical Internet architecture for fresh food distribution networks with the goal of meeting the key challenges of maximizing the freshness of the delivered product and minimizing waste. The physical Internet (PI) architecture is based on the fundamental assumptions of infrastructure sharing among various parties, standardized addressing of all entities and modularized operations. In this paper, we enhance the PI architecture by including a freshness metric and the space-efficient loading/unloading of heterogeneous perishable goods onto the trucks depending on their delivery requirements. We also discuss mechanisms for reducing empty miles of trucks and the carbon footprint of the logistics while reducing the driver’s away-from-home time for long distance delivery. Via extensive simulations, the paper shows that the proposed architecture reduces the driver’s away-from-home time by ∼93%, whereas it improves the food delivery freshness by ∼5%. We show that there is a clear tradeoff between the transportation efficiency of the trucks and the delivery freshness of the food packages

    A Smartphone-Based Network Architecture for Post-Disaster Operations using WiFi Tethering

    No full text
    Electronic communication is crucial for monitoring the rescue-relief operations and providing assistance to the affected people during and after disasters. Given the ubiquity of smartphones, we envision that smartphones with lost connection (due to damage) to the communications infrastructure are nevertheless integrated seamlessly into the network as far as possible. To achieve this, we propose to build ad hoc subnetworks of disconnected smartphones using theWiFi tethering technology and ultimately connect them to either the emergency communication equipment deployed in the disaster area or to other smartphones that have still the network connectivity. The proposed architecture for such integration and a defined software-based control through the emergency control center (ECC) enables battery aware collection of critical data through smartphone sensors. The developed solution supports mobility of all smartphones, including those that have lost direct cellular connectivity as well as those that have not and are willing to act as gateways. We demonstrate how the proposed scheme can be tied to the standardized wireless emergency alert service and how it can effectively handle mobility tolerant device discovery and data transfer
    corecore